+ Reply to Thread
Page 1 of 3 1 2 3 LastLast
Results 1 to 10 of 24

Thread: KOH mix strength, amps versus production

  1. Default KOH mix strength, amps versus production

    Hello,
    I have built a new cell that is a combination of a dry cell and a wet cell.

    I tried using .040" pvc gaskets, but ran into leaks, and internal arcing. So I disassembled the cell to start over with better materials.

    I will be using 1/8" EPDM gaskets, and EPDM plates or something akin to it next time.

    But what Im trying to figure out, is the best mix strength for my cell once I get it put back together. I typically run 3tspns per gallon of KOH.

    With that my 5N3 cell with 6 x 7" plates gave me 18 seconds on a 500ml bottle, @ 22amps, and 13 seconds @ 32amps. This was 13 vdc, and 50 degree electrolyte.

    http://www.youtube.com/watch?v=Sn1MM...ature=youtu.be

    Does adding to the strength of the electrolyte increase production in direct correlation to the amp draw? Im wanting to make a heater with this cell.
    In the above mentioned configuration, I was able to produce a 2 to 3 inch flame and burn some pop cans with my #2 hoke jewelers tipped torch.

    Ideally Ill be running a couple of small torch tips heating re-boiler type heat exchangers and passing them through CPU cooling radiators.
    Think of it like a big Mr. Coffee maker that produces heat rather than coffee.

    I'd like to know if anyone has come up with a standard on KOH mix strength. This would help me in the design to know what amperage, to KOH mix strength would produce the best. My target goal is to run this under 400watts, and less than 30 amps while at full operating temp.

    Any help here?
    Last edited by ydeardorff; 10-23-2012 at 10:16 AM.

  2. #2
    Join Date
    Nov 2009
    Location
    San Diego, California.
    Posts
    337

    Default So . . .

    Quote Originally Posted by ydeardorff View Post
    Hello,
    I have built a new cell that is a combination of a dry cell and a wet cell.

    I tried using .040" pvc gaskets, but ran into leaks, and internal arcing. So I disassembled the cell to start over with better materials.

    I will be using 1/8" EPDM gaskets, and EPDM plates or something akin to it next time.

    But what Im trying to figure out, is the best mix strength for my cell once I get it put back together. I typically run 3tspns per gallon of KOH.

    With that my 5N3 cell with 6 x 7" plates gave me 18 seconds on a 500ml bottle, @ 22amps, and 13 seconds @ 32amps. This was 13 vdc, and 50 degree electrolyte.

    http://www.youtube.com/watch?v=Sn1MM...ature=youtu.be

    Does adding to the strength of the electrolyte increase production in direct correlation to the amp draw? Im wanting to make a heater with this cell.
    In the above mentioned configuration, I was able to produce a 2 to 3 inch flame and burn some pop cans with my #2 hoke jewelers tipped torch.

    Ideally Ill be running a couple of small torch tips heating re-boiler type heat exchangers and passing them through CPU cooling radiators.
    Think of it like a big Mr. Coffee maker that produces heat rather than coffee.

    I'd like to know if anyone has come up with a standard on KOH mix strength. This would help me in the design to know what amperage, to KOH mix strength would produce the best. My target goal is to run this under 400watts, and less than 30 amps while at full operating temp.

    Any help here?
    Let me understand what you are attempting to do here.

    You want to produce HHO, burn it to heat a liquid then transfer the heat through radiators?

  3. Default

    Yes.

    For this project I dont need monster flames, only enough to heat the liquid in hand made heat exchangers.

    The design uses all of the heat produced from the power supply, generator, and the flame(s).

    I have small high temp water pumps to circulate the coolant through the heat exchanger and radiators. The natural thermosiphoning effect will pump the liquid anyway, but the 1LPM pump will just help it move a touch faster.

    The heat from the following sources will be used:

    Computer power supply
    HHO Generator
    2 flame to liquid heat exchangers
    1 fluid to fluid heat exchanger
    Left over heat from the flame

    All of this will be directed from outside air, into the plenum to be exited as heat. So this doesn't waste any heat source within the unit.

    The hoke jewelers torch tips offer me a stable, usable flame that is small and can run on 1.5 lpm or less.


    There has to be a "sweet spot" on the electrolyte mixture. I know every electrolysis cell is different. But I would hope that with all the collective years of knowledge on this forum, that someone would have figured that out.
    Last edited by ydeardorff; 10-23-2012 at 10:57 AM. Reason: additional info

  4. #4
    Join Date
    Nov 2009
    Location
    San Diego, California.
    Posts
    337

    Default So . . .

    Quote Originally Posted by ydeardorff View Post
    Yes.

    For this project I dont need monster flames, only enough to heat the liquid in hand made heat exchangers.

    The design uses all of the heat produced from the power supply, generator, and the flame(s).

    I have small high temp water pumps to circulate the coolant through the heat exchanger and radiators. The natural thermosiphoning effect will pump the liquid anyway, but the 1LPM pump will just help it move a touch faster.

    The heat from the following sources will be used:

    Computer power supply
    HHO Generator
    2 flame to liquid heat exchangers
    1 fluid to fluid heat exchanger
    Left over heat from the flame

    All of this will be directed from outside air, into the plenum to be exited as heat. So this doesn't waste any heat source within the unit.

    The hoke jewelers torch tips offer me a stable, usable flame that is small and can run on 1.5 lpm or less.


    There has to be a "sweet spot" on the electrolyte mixture. I know every electrolysis cell is different. But I would hope that with all the collective years of knowledge on this forum, that someone would have figured that out.
    . . . your ultimate goal is to heat air. If I have read things correctly.

  5. Default

    Yes it is.

    Im not setting any goals like heating my whole home or nothing. Im seeing what can be done with my design. The pumps despite only being 1 lpm may be too much and the coolant may not get warm enough.

    I made my copper 1/4" OD coil over a 3/4" copper pipe. I then ran the output to the input on the coil as a big loop. Though it was nothing to get excited about, the coolant got warm pretty quickly (about 5 minutes) with a flame a little longer than the tip of your finger.

    Should this design work even decently, my hope is to have it be a maintainer of the heat in the house. Not unrealistically heat the whole home with it. Something I can use to keep the house from dropping into the 40's or 50's at night.

    But Im also aware that electrolyte strength should be relative to the plate gaps within the cell. So a cell with 1/16" gaps would need less electrolyte strength than a cell with 1/8" gaps.
    But what is the optimum KOH mixture strength in distilled water?
    Last edited by ydeardorff; 10-23-2012 at 11:42 AM.

  6. #6
    Join Date
    Nov 2009
    Location
    San Diego, California.
    Posts
    337

    Default I am not sure where you are in your engineering courses.

    Quote Originally Posted by ydeardorff View Post
    Yes it is.

    Im not setting any goals like heating my whole home or nothing. Im seeing what can be done with my design. The pumps despite only being 1 lpm may be too much and the coolant may not get warm enough.

    I made my copper 1/4" OD coil over a 3/4" copper pipe. I then ran the output to the input on the coil as a big loop. Though it was nothing to get excited about, the coolant got warm pretty quickly (about 5 minutes) with a flame a little longer than the tip of your finger.

    Should this design work even decently, my hope is to have it be a maintainer of the heat in the house. Not unrealistically heat the whole home with it. Something I can use to keep the house from dropping into the 40's or 50's at night.

    But Im also aware that electrolyte strength should be relative to the plate gaps within the cell. So a cell with 1/16" gaps would need less electrolyte strength than a cell with 1/8" gaps.
    But what is the optimum KOH mixture strength in distilled water?
    But, you must realize the efficiency losses stack up through each step in your system.

    Take the power out of the wall, run it through a switching power supply at about 90% efficiency, into an electrolysis generator that is around 60% efficient if we are lucky and into a heat exchange system that might transfer 70% of the heat and . . . you will be lucky to get 1/3 of your energy out as heat.

    Look up in-floor radiant heat and realize that is one of the most efficient forms of heat distribution. Then create your hot water from an energy source that is efficient, low cost or renewable. There is another thread on here where BioFarmer and others have links to people running burners with waste motor oil, and other waste streams.

    I would suggest looking in the direction of augmenting the WMO burn with HHO. That is where my heating experiments are going. I am blessed with two homes - one along the beach here in semi-tropical San Diego and the other looking up at the ski slopes in Southern California's mountains. The beach home has an awesomely efficient central heat exchange unit - that we rarely if ever use. The much older mountain home has a fireplace. I have resource streams of both WVO ( waste vegetable oil) and WMO (waste motor oil) with which I would like to heat my house and outbuilding shop site.
    My powered Kerosene heater does well with Diesel #2, but smokes badly on well filtered and centrifuged WMO. I am going to probably need to heat the oil and augment the combustion - it keeps tripping the CO alarm. My goal is to get it to run so clean it will not trip the CO alarm.

  7. Default

    Quote Originally Posted by RustyLugNut View Post
    But, you must realize the efficiency losses stack up through each step in your system.

    Take the power out of the wall, run it through a switching power supply at about 90% efficiency, into an electrolysis generator that is around 60% efficient if we are lucky and into a heat exchange system that might transfer 70% of the heat and . . . you will be lucky to get 1/3 of your energy out as heat.

    My powered Kerosene heater does well with Diesel #2, but smokes badly on well filtered and centrifuged WMO. I am going to probably need to heat the oil and augment the combustion - it keeps tripping the CO alarm. My goal is to get it to run so clean it will not trip the CO alarm.
    I understand about the losses. "Everything" has efficiency losses. Im not out here trying to get over-unity, or anything. I just want to see how well I can make this thing work. My 20 y/o Coleman electric central air furnace nearly burns out the bearings on the meter out side when it switches on. There are plenty of HHO heaters out there. Some selling plans, other selling them on the market. So its obvious they work to some degree. Its not about efficiency losses, it whether the thing will work or not.

    The CO problem is precisely why I like the idea of HHO for heating. Using any kind of oil heating if not done properly can be very dangerous. Some units require you leave a window open due to possible asphyxiation. In that case whats the point.

    Im just interested in the KOH mixture to plate gap ratio if anyone is willing to share.

  8. #8
    Join Date
    Nov 2009
    Location
    San Diego, California.
    Posts
    337

    Default I've given you my advice.

    Quote Originally Posted by ydeardorff View Post
    I understand about the losses. "Everything" has efficiency losses. Im not out here trying to get over-unity, or anything. I just want to see how well I can make this thing work. My 20 y/o Coleman electric central air furnace nearly burns out the bearings on the meter out side when it switches on. There are plenty of HHO heaters out there. Some selling plans, other selling them on the market. So its obvious they work to some degree. Its not about efficiency losses, it whether the thing will work or not.

    The CO problem is precisely why I like the idea of HHO for heating. Using any kind of oil heating if not done properly can be very dangerous. Some units require you leave a window open due to possible asphyxiation. In that case whats the point.

    Im just interested in the KOH mixture to plate gap ratio if anyone is willing to share.
    Just because you have plans for HHO heaters that work, it doesn't make them sensible if you are using electricity that you buy from the municipality. Use the electricity directly in modern radiant heater, and bypass all the losses.

    My CO problem is with my old forced heater. I would use a heat exchanger so you would have no combustion gasses entering the home or enclosed area. This is only logical. I gave it as an example.

    I am not sure who your professor's are and what level of engineering you are at and what discipline. Ask them to explain to you thermodynamics and heat flow. KOH mixtures and plate gap ratios will not help you overcome your efficiency losses to any useful degree.

  9. Default

    OK, back on topic.

    Anyone have a preferred mix rate?

  10. #10
    Join Date
    Nov 2009
    Location
    San Diego, California.
    Posts
    337

    Default Super saturated solution.

    Quote Originally Posted by ydeardorff View Post
    OK, back on topic.

    Anyone have a preferred mix rate?
    It turns out to be about 28% for KOH as your electrolyte. This provides the lowest electrolyte resistance per cell. It also means cell spacing can be increased.

+ Reply to Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts